
User's and

Installation Guide

Portable Simula System

based on C

by

Sverre Johansen

Stein Krogdahl

and Terje Mj�s

Department of informatics

University of Oslo

January 1991

1 Introduction

Cim is a compiler for the programming language Simula, as approved (not yet)

by the SIMULA Standards Group (except unspeci�ed parameters to formal

or virtual procedures). It o�ers a class concept, separate compilation with

full type checking, interface to external C-routines, an application package for

process simulation and a coroutine concept. Reference is the book: Kirkerud,

Object-oriented programming with SIMULA, Addison Wesley 1989.

Cim is a Simula compiler whose portability is based on the C programming

language. The compiler and the run-time system is written in C, and the com-

piler produces C-code, that is passed to a C-compiler for further processing

towards machine code.

2 Installation

The system is distributed as a compressed tar �le. Take the following actions

to install the software:

1

1. Uncompress the tar �le with the tar command:

%uncompress cim.tar.Z

2. Extract the �le with the tar command:

%tar xf cim.tar

3. List the �les with the ls command to verify that you have gotten the

correct �les:

%ls

Makefile cim.1 cim.h cim.tar

cimtest.sim cim libcim.a

4. Read the make �le, and create the needed directories to run make install.

5. Install the system by entering super user and make install:

%su

Password:

%make install

%exit

6. A simple test of the installation can be made by make test:

%make test

cim -r test

Compiling: test.sim

cc -w -c test.c

cc -o testinst test.o -lcim -lm

Executing testinst:

Installation: No errors found

3 A simple example

We show in this section a simple example of a SIMULA program and how to

compile and run it.

Create a SIMULA program with a text editor, and give it a name with

extension \sim". In this example we name it doesit.sim:

begin

Outtext("Simula does it in C");

Outimage;

end

2

You can now compile the program with the cim command:

%cim doesit

Compiling: doesit.sim

cc -w -c doesit.c

cc -o doesit doesit.o -lcim -lm

%

The compiler will produce C code that is further processed towards machine

code with a standard C compiler. All produced �les have the same name as the

input �le, but with di�erent extensions. The compiled and linked program can

be invoked by entering:

%doesit

Simula does it in C

%

4 Compiling

Cim is a Simula compiler that �rst compiles the source code into C. The C code

will then be compiled with cc, and linked with other modules.

The Cim command will accept one Simula program and other none Simula

modules. The speci�ed Simula program will be compiled and linked with the

modules. If a main Simula program is compiled, it will automatic be linked with

the necessary Simula modules. If a separate Class or Procedure is compiled, then

the linking will be suppressed.

The diagnostics produced by the Simula compiler are intended to be self-

explanatory.

The following options are accepted by the cim command:

� -c

Suppress linking of the complete program.

� -C

Only link the speci�ed �les.

� -cc

The following argument is the name of the C-compiler.

� -Dname

De�ne a symbol name.

� -E

Run only the preprocessor and output the result to standard output.

3

� -g

Make the C compiler produce debugging information. This option is useful

for debugging the generated code.

� -gcc

Invoke the Gnu Project C compiler instead of the standard C compiler.

This option can be used if the standard C compiler don't generate correct

code.

� -I dir

Use the Simula include �le located in directory dir instead of the standard

directory /usr/local/include.

� -l

Omit line number information in the compiled program. This will make

the program smaller and faster.

� -llibrary

Link with object library library. This option is parsed to the link-command.

� -Ldir

Use the Simula library located in directory dir instead of the standard

directory /usr/local/lib.

� -m

The memory pool size may be set at runtime by an option -mn.

� -mn

Set the initial memory pool size to n mega bytes.

� -Mn

Set the maximal memory pool size to n mega bytes.

� -o

The following argument is the name of the output executable �le.

� -oc

The following argument will be parsed to the CC-command.

� -ol

The following argument will be parsed to the link-command.

� -q

Run the compiler in quiet mode.

� -r

Run the program after compilation.

4

� -R

Recompile the module using the same timestamp.

� -s

Only C-compile and link the speci�ed �les.

� -S

Run the source �le through Simula-compiler, only.

� -t

Do not remove temporary �les. If a main program is compiled with option

-r, then the executable �le will be removed unless this option or option -T

is speci�ed.

� -T

Do not remove the executable �le.

� -Uname

Remove any initial de�nition of the symbol name (Inverse of the -D op-

tion).

� -v

Run the compiler in verbose mode.

� -w

Do not print warnings.

4.1 Arguments

The following arguments are accepted by the Cim command:

� �le.a

Library of object �les and attribute �les. Include this simula library when

compiling and linking. The simula library is created with ar(1V) and

ranlib(1).

� �le.o

Object �le of other none Simula modules.

� �le.sim

Simula source �le. A �le name without an extension are assumed to be

shorthand notation for the corresponding Simula �le.

5 Implementation Aspects

5.1 Language restrictions

A formal or virtual procedure must be speci�ed with respect to its type, and

type, kind and transmission mode of its parameters.

5

5.2 Allowed implementation restrictions

� The type short integer and long real is implemented as integer and real.

� The standard access mode SHARED for �les is not implemented.

� The only and default byte size of access mode BYTESIZE is 8.

5.3 Implementation dependent characteristics

� Trailing blanks of image are not transferred to the external �le on out-

�le.outimage excepts it's a direct �le.

� A parameter to print�le.spacing with value zero gives the standard e�ect

of overprint.

� The procedures lock and unlock are not implemented.

� All open external �les are closed when a program is terminated.

� The following directive lines is supported:

{ % whitespace ...

A directive line with a whitespace is treated as a comment line.

{ %nocomment ...

The rest of the line is treated as ordinary source text. Some other

simula implementations will ignore this line, and give a warning mes-

sage. But this can be useful as the following example shows. In this

implementation formal procedures must be speci�ed, but that should

not be done in standard simula. This will work both on Lund (Simula

implementation from Lund Software House AB, Sweden) and Cim:

PROCEDURE P(i1,P2);INTEGER i1;

%nocomment PROCEDURE P2 IS

INTEGER PROCEDURE P2

%nocomment (i,j);INTEGER i,j;

;

{ %comment

Will cause the compiler to strip all lines until the corresponding

%endcomment is reached. This directive may be nested.

{ %eof

Will cause the compiler to react as if the end of the source �le was

reached. Include �les that is placed in a archive must be preceded

with this directive line.

6

{ %casesensitive ON/OFF

The case sensitivity of identi�ers and keywords is turned ON or OFF.

Default value is OFF.

{ %define name

De�ne a name. Names such as aix, amigados, convex, cray hp9000s800,

hppa, hpux, i286, i386, i486, mach, minix, msdos, mc68000, mc68010,

mc68020, mc68030, mc68040, m88000, mips, next, ns32000, sony,

sparc, sunos, ultrix, unicos, unix, vax and vms are de�ned dependent

of the system. The name cim is de�ned for implementations that is

generating C code.

{ %error ...

Will cause the compiler to believe that it has found an error in the

source text. The message that is preceded on the line is printed as

an error message.

{ %ifdef name

If name is not de�ned then the compiler will strip all lines until the

corresponding %else or %endif is reached. If name is not de�ned

then the compiler will strip all lines between the optional %else and

%endif.

{ %include �lename

Will cause the compiler to include the indicated �le in place of the

INCLUDE directive line. This directive may be nested, but only to

a level of 10.

{ %nameasvar ON/OFF

If it is turned ON, then transmission mode for name is implemented

as reference. This will produce more e�cient code. Default value is

OFF.

{ %staticblock ON/OFF

If it is turned on, then data objects will be allocated static instead

of dynamic, and the compiler may generate more e�cient code. This

option should be used with care and should not be used for blocks

which may have more than one active data object at a given time.

The option may not be used for classes that are given as pre�x or

virtual procedures or procedures that are parameter to other proce-

dures. It may not be used for external classes or procedures.

{ %stripsideeffects ON/OFF

If it is turned ON, then the compiler can generate more e�cient code,

but not necessary correct code due to evaluation order for expressions.

Default value is OFF.

{ %undefine name

Unde�ne a name. If the name is not de�ned the directive line has no

e�ect.

7

� C is the only language supported for none-Simula external procedures.

\Kind" is interpreted as \C", and the external-item is case sensitive. Ex-

ternal C procedures must be speci�ed in the following way:

External C procedure external-item is type procedure procedure-identi�er

parameter/mode/speci�cation-part ; ;

The rules for external C procedures are:

{ Avoid global symbols pre�xed with \ ", it may lead to con
icts with

system names in Cim.

{ The procedure may have any type, except ref. If the type is text, then

the null terminated string returned from C is converted to a Simula

text object.

{ Parameters may not be a Simula-procedure, switch or label.

{ Parameters transmitted by value are always copied. Text or arrays

are allocated by malloc, and are not deallocated by Cim. It's the

C-programs responsibility to dealloc the space.

{ Parameters transmitted by reference or name are transmitted to C

as pointer to. Array or text are transmitted to C by the location of

the �rst element.

{ External C procedures with variable number of parameters can be

speci�ed by use of \..." in the end of the parameter list. Printf and

scanf can be speci�ed as follows:

EXTERNAL C PROCEDURE printf IS

INTEGER PROCEDURE printf(t,...);TEXT t;;

EXTERNAL C PROCEDURE scanf IS

INTEGER PROCEDURE scanf(t,...);NAME ...;TEXT t;;

5.4 Implementation de�ned characteristics

� The internal character are the same as the standard character set.

� Inlength and outlength are equal to 80.

� SYSIN, SYSOUT and SYSERR is connected to standard input, standard

output and standard error. If they are closed and reopened they are

connected to /dev/tty under UNIX, AIX and MINIX and sys$input

and sys$output under VMS.

� The relative value ranges of real are as double in C and ranges of integer

are as long.

� Conversion from an integer type to a real type are exact except for im-

plementations where integer have better precision than real (which is the

case for the cray implementation.)

8

� The e�ect is not de�ned if the range of a numeric item in a de-editing

procedure exceeds the value range of the procedure result.

� The exponent from \putreal" has 5 characters except for the cray imple-

mentation where it may be 6 characters.

� A text frame has a maximum length of about 64K characters.

� The return values of \char" and \rank" are as given by the standard

character set.

� The exact de�nitions of the standard mathematical functions are system

speci�c.

� The association between a �le object and an external �le are standard

procedures based on C's FILE. The object is connected to the external

�le when open is called.

� Several �le objects may represent the same external �le, but the e�ect is

not de�ned if some of them is opened for writing.

� A minimum of checks are performed at \locate".

� The default value to LINES PER PAGE is MAXINT.

� The \basic random drawing" is implemented as suggested in the standard.

� Two decimals are used for the �eld for seconds of the function \datetime".

� Evaluation of arithmetic expressions are based on C, but the Simula ex-

pression are by default divided up in several expressions, to guarantee

correct evaluation order.

5.5 Capacity limitations

The compiler have the following logical limitations:

� The maximal number of Simula-libraries that the compiler can search is

100 libraries.

� Length of a token in the input stream is restricted to about 1000 charac-

ters.

� The nesting of compiler directives is limited to 100.

� The level of nesting of include �les must not exceed 10.

� The parser is written i YACC and the parser stack have a size equal 1500

elements.

9

� Block nesting level is limited to 100.

� The compiler builds an expression tree for each Simula-expression, and

one tree is limited to 1000 nodes.

� The code generator have a stack of labels with 1000 elements.

� Temporary expressions may not consist of more than 100 value-type, 100

text, or 100 ref-type elements.

� The nesting of temporary expressions may not be deeper than 100 levels.

� The maximum number of dimensions for arrays is 100.

� Text objects may not contain more than about 64K characters.

� Some other limitations that is based on the underlying hardware or the

operating system, and that is not checked by the compiler.

5.6 Extension to the environment

The following procedures is added to the Simula environment and may be called

directly from Simula:

� PROCEDURE Gbc;...;

The garbage collector is called when the dynamic storage exceeds an im-

plementation dependent limit. The garbage collector traverse and moves

all the accessible objects, and leaves the free space as one area initial-

ized to zero. The garbage collector may be called explicitly through the

procedure Gbc.

� INTEGER PROCEDURE Argc;...;

Returns the number of command-line arguments that the program was

invoked with.

� INTEGER PROCEDURE Argv;...;

Returns a pointer to an array of character strings (in C fashion) that

contains the arguments.

� PROCEDURE Dump(t);TEXT t;...;

Dump the state of the Simula-program to �le. Before a call on Dump all

�les except SYSIN, SYSOUT and SYSERR should be closed.

� PROCEDURE UnDump(t);TEXT t;...;

Read a previously stored state from �le and start the program in that

state. To get these procedures to work, they should be compiled into the

same program. The program may not be re-compiled between a call on

Dump and UnDump.

10

� |tt REF(PrintFile) PROCEDURE SysErr;...;

Returns the �le object associated with standard error.

6 Error report

Errors should be reported to cim-bug@i�.uio.no.

7 Authors

� Terje M�s, Hydro Data, Oslo.

� Sverre Johansen, Department of Informatics, University of Oslo.

� Stein Krogdahl, Department of Informatics, University of Oslo.

11

